收藏本站  |  网站地图  |  联系我们  |  ENGLISH  |  中国科学院  
 
 
当前位置:首页 > 学术报告与培训
中科院可再生能源重点实验室学术报告会通知
发表日期:2015-07-21    admin_182344   打印          【关闭

重点实验室各研究团队:  

    应重点实验室邀请,美国威斯康星大学化学与生物工程系George W. Huber教授将于729日访问重点实验室并做学术报告,现将相关事宜通知如下: 

      间:729日,上午900—1100 

    地  点:新能源大楼907会议室  

        目:The Design of New Catalytic Technologies: Challenges and Opportunities of the Emerging Clean Fuels and Chemicals Industry

        报告内容:

   Concerns about global warming and national security, combined with the diminishing supply and increased cost of fossil fuels are causing our society to search for new sources of transportation fuels.  Lignocellulosic biomass, the non-edible portion of biomass including trees, agricultural residues and fast growing energy crops, is available as a renewable feedstock today. In this presentation we will discuss different approaches for the production of renewable fuels and chemicals that are being developed both inside and outside the Huber research group.   

  The objective of the Huber research group is to develop new catalytic processes and catalytic materials for the production of renewable fuels and chemicals from biomass, solar energy, and natural gas resources.  We use a wide range of modern chemical engineering tools to design and optimize these clean technologies including: heterogeneous catalysis, kinetic modeling, reaction engineering, spectroscopy, analytical chemistry, nanotechnology, catalyst synthesis, conceptual process design, and theoretical chemistry.  We will highlight some of the challenges and future opportunities for future process development and design of new catalytic approaches. We will show that all the same fuels and chemicals that are made from petroleum can be made from renewable biomass resources.   

  Hydrodeoxygenation (HDO) is a platform technology used to convert liquid biomass feedstocks (including aqueous carbohydrates, pyrolysis oils, and aqueous enzymatic products) into alkanes, alcohols and polyols.  In this process the biomass feed reacts with hydrogen to produce water and a deoxygenated product using a bifunctional catalyst that contains both metal and acid sites.  The challenge with HDO is to selectively produce targeted products that can be used as fuel blendstocks or chemicals and to decrease the hydrogen consumption.  In our talk we will talk about how to design improved catalytic materials and processes to selective produce both liquid transportation fuels and higher value commodity chemicals from biomass. 

  Renewable aromatics and olefins can be produced from biomass by a technology catalytic fast pyrolysis (CFP).  The aromatics can be used as a feedstock to make renewable polymers including polycarbonates, polyurethanes, polystyrenes, and polyethylene terephthalates.  CFP involves the direct production of aromatics from biomass in a single catalytic step.  Solid biomass is fed into a fluidized bed reactor where the solid biomass thermally decomposes.  The biomass vapors enter a zeolite catalyst where a series of dehydration, decarbonylation and oligomerization reactions occur to form aromatics, olefins, CO, CO2, coke and water. Coke is formed from homogeneous decomposition reactions or catalytic reactions inside the zeolite.  Fundamental catalytic studies with model compounds combined with in-situ and temperature programmed techniques have aided in the design of improved zeolite catalysts for CFP.  

  We believe that new catalytic conversion technologies have a tremendous potential for the production of renewable fuels and chemicals.   As will be demonstrated in this presentation chemistry, chemical catalysis and chemical engineering are critical 21st century needs to help make renewable energy a practical reality. 

     报告人简介:

   Huber教授2005年在威斯康星大学化学工程系获得博士学位,1999年、2000年在杨百翰大学获得本科和硕士学位。 

  Huber 教授主要致力于解决木质纤维素生产生物燃料过程中的化学和工程方面的难题,目前和政府和工业部门有多方合作,努力实现由木质纤维素原料到生物质燃料的生产。Huber 教授是Anellotech 生物燃料公司的合作创始人,该公司主要致力于一项快速催化热解技术的商业化推广,此项技术由Huber团队开发并主要用于把生物质转化为汽油范围内的芳香烃物质。另外,Huber团队发现的催化剂Raney-NiSn(主要用于生物质衍生物制氢)被Scientific America命名为200350个技术突破中的一个。 

  Huber教授发表论文80多篇,其中3篇在Science 上发表,是Energy and Environmental Science 以及ChemCatChem的编委会成员,同时是the National Advanced Biofuels Consortium CatchBio的科学顾问。 

    参加人员:请生物质能中心生物质催化转化实验室的全体科技人员和研究生参加,同时欢迎其他感兴趣的人员参加。

附件下载
相关新闻
版权所有 © 中国科学院广州能源研究所 Copyright © 2002-2013 粤ICP备11089167号
地址:广州市天河区五山能源路2号 电话:020-87057639(党政办) 87057637(科技处) E-mail:web@ms.giec.ac.cn